Machine Learning For Feature-Based Analytics

Li-C. Wang University of California, Santa Barbara

ISPD 2018 Monterey CA

Machine Learning

Machine Learning is supposed to construct an "optimal" model to fit the data (whatever "optimal" means)

ML Tools: e.g. http://scikit-learn.org/

Classification

Identifying to which category an object belongs to.

 Applications:
 Spam detection, Image recognition.

 Algorithms:
 SVM, nearest neighbors, random forest, ...
 — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency Algorithms: PCA, feature selection, non-negative matrix factorization.

Examples

Regression

Model selection

tuning

metrics.

parameters and models.

Predicting a continuous-valued attribute associated with an object.

Comparing, validating and choosing

Goal: Improved accuracy via parameter

Modules: grid search, cross validation,

Clustering

Automatic grouping of similar objects into sets.

 Applications: Customer segmentation,

 Grouping experiment outcomes

 Algorithms: k-Means, spectral clustering,

 mean-shift, ...

 — Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.

Modules: preprocessing, feature extraction.

Examples

ISPD 2018 Monterey CA

Examples

Dataset Format

> A learning tool usually takes the dataset as above

- Samples: examples to be reasoned on
- Features: aspects to describe a sample
- Vectors: resulting vector representing a sample
- Labels: care behavior to be learned from (optional)

ISPD 2018 Monterey CA

Noticeable ML Applications In Recent Years

Self-Driving Car

Mobile Google Translation

Smart Robot

AlphaGo (Google)

*These images are found in public domain

Deep Learning for Image Recognition

ImageNet: Large Scale Visual Recognition Challenge (<u>http://www.image-net.org/challenges/LSVRC/</u>)

- 1000 Object Classes, 1.4M Images

Deep Learning for Image Recognition

ImageNet: Large Scale Visual Recognition Challenge (<u>http://www.image-net.org/challenges/LSVRC/</u>)

- 1000 Object Classes, 1.4M Images

Deep Learning for Image Recognition

ImageNet: Large Scale Visual Recognition Challenge (<u>http://www.image-net.org/challenges/LSVRC/</u>)

- 1000 Object Classes, 1.4M Images

Question Often Asked

>Which tool is better?

In many EDA/Test applications, it is not just the tool!

Applications – Our Experience

Challenges in Machine Learning for EDA/Test

Data

- Data is limited
- Data can be extremely unbalanced (very few positive samples of interest, many negative samples)
- Cross-validation is not an option

> Model Evaluation

- The meaningfulness of a model specific to the context
- Model evaluation can be rather expensive

e.g. Functional Verification

- Goal: to achieve more coverage on CP
- Approach: Analyze simulation traces to find out
 - What combination of signals can activate CP?
- > Features: f_1, f_2, \cdots, f_n are testbench-controllable signals
- Data: Few or no samples that cover CP
 - Positive Samples: 0 to few
 - Negative Samples: 1K to few K's

e.g. Physical Verification

- Goal: to model causes for an issue
- Approach: Analyze snippets of layout images to find out
 - What combination of features can cause a issue?
- Features: f₁, f₂, ..., f_n are developed based on domain knowledge to characterize geometry or material properties
- Data: Few samples for a particular type of issue
 - Positive Samples: 1 to few
 - Negative Samples: many

e.g. Timing Verification

- Goal: to model causes for a miss-predicted silicon critical path
- Approach: Analyze unexpected silicon critical paths
 - What combination of design features can cause an unexpected critical path?
- Features: f₁, f₂, ··· , f_n are developed based on design knowledge to characterize a timing path
- Data: Few samples for a particular type of critical path
 - Positive Samples: 1 to few
 - Negative Samples: many (STA critical but not silicon critical about \$25K paths)

e.g. Yield

- Goal: to find a receipt to improve yield
- Approach: Analyze wafer yield data with process parameters
 - Tuning what combination of process parameters can improve yield?
- > Features: f_1 , f_2 , \cdots , f_n are tunable process parameters
- Data: Samples can be parts or wafers
 - Positive Samples: Failing parts or Low-yield wafers
 - Negative Samples: Others

Feature-Based Analytics

> Problem:

 Search for a combination of features or feature values among a large set of features

> Data:

- Interested in positive samples
- Extremely unbalanced Many more negative samples and very few positive samples
- > Not a traditional feature selection problem
 - Insufficient data
 - Cannot apply cross-validation to check a model

In Practice, This Is What Happens

Learning from data becomes an iterative search process (usually run by a person)

An Iterative Search Process

- > Learning is an iterative search process
- The analyst
 - (1) Prepare the datasets to be analyzed
 - (2) Determine if the results are meaningful
- The effectiveness depends on how the analyst conducts these two steps – not just about the tool in use!

Implications

Implications

Implications

Machine Learning Toolbox

Questions

> Recall main issue: We can't apply cross-validation

- > Why do we need cross-validation?
- Why can a machine learning algorithm guarantees the accuracy of its output model?
- What's a machine learning algorithm trying to optimize anyway?

Five Assumptions To Machine Learning

- > A restriction on *H* (otherwise, NFL)
- > An assumption on **D** (i.e. not time-varied)
- > Assuming size *m* is in order O(poly(*n*)), *n*: # of features
- > Making sure a practical algorithm *L* exists
- > Assuming a way to measure error, e.g. *Err(f(x), h(x))*

In Practice

As A Result, We Need Occam's Razor Assumption

- > Hypothesis space: e.g. all possible assignment of weight values in a neural network (can be infinite)
- Occam's Razor (Regularization): Find the "simplest" hypothesis that fit the data
 - Hence, many machine learning algorithms solve a non-convex constrained minimization problem (NP-Hard or Harder)
- However, the simplicity measure might not be meaningful in an application context

In Practice

Many Things Are Not Ideal

- Your assumption of the hypothesis space might be too simple (underfitting) or too complex (overfitting)
- You may not have sufficient data to identify the exact answer from your assumed hypothesis space
- Your learning algorithm is only a heuristic and does not guarantee to find the "optimal" model
- > As a result, you need cross-validation

Main Question For The ML Tool

Alternative Machine Learning View

- Traditional machine learning: Find an optimal model based on the given dataset
- Alternative machine learning: Find an interpretable Hypothesis Space Assumption H where a model can JUST-FIT the dataset but not overfitting

Illustration of AML

- Search for the "JUST-FIT" hypothesis space
 - Such that the output model among the few answers consistent with all the samples
- The JUST-FIT hypothesis space (if exists) can be a measure of quality for the model

VeSC-CoL: Our Concept Learning Tool

VeSC-CoL

- Reference : Kuo-Kai Hsieh and Li-C. Wang, A Concept Learning Tool Based On Calculating Version Space Cardinality, arXiv:1803.08625 [cs.AI], Mar 23, 2018
- > Handle binary-valued features
- > Target (interpretable) concept: *k-term DNF, for small k*
- Designed to handle extremely-unbalanced dataset without cross-validation
- > Two implementations: SAT-Based and OBDD-Based

K-term DNF – Terminology

 $x_1 \overline{x_2} x_4 \longrightarrow$ 1-term DNF or Monomial Length l = number of literals = 3

$$x_1\overline{x_2}x_4 + \overline{x_4}x_6 \longrightarrow 2$$
-term DNF or Monomial

Length l = number of literals = 3+2 = 5

n = number of features (variables)

VeSC-CoL's Hypothesis Space Search

Given an upper bound on k for k-term DNF

H_l is the hypothesis space for all hypotheses with length *l*

Runtime Examples (k=1)

- Correct answer is with *l* = 5
- *n* does not affect runtime much
- > *l* limits how far we can search

Interesting Finding

As n increases, you are likely to run out of time than to run out of data (assuming most are negative samples)

Interesting Finding

For BDD-based implementation, the runtime wall happens in the early processing of the negative samples

Number of features: *n*=100

Interesting Finding

Requirement for learning the "k=1" space dominates the requirements for learning the "k>1" spaces

Number of features: *n*=100

Guarantee by VeSC-CoL

- Solution State Assuming the correct answer can be represented as a k-term DNF for a selected k, then VeSC-CoL always find the answer (assuming runtime is allowed)
 - Experimentally shown for k up to 3, l up to 8, negative sample size up to 10K

VeSC-CoL	CART	ID3
$x_2 x_{63} \overline{x_{75}} x_{78} \overline{x_{80}}$	$x_3x_4x_{28}x_{47}\overline{x_{53}}\overline{x_{55}}\overline{x_{80}}$	$x_2 x_3 x_4 \overline{x_{30}} x_{47} \overline{x_{53}} \overline{x_{81}}$
$x_{39}\overline{x_{45}}x_{72}\overline{x_{74}}x_{95}$	$\overline{x_5}x_{16}x_{35}\overline{x_{45}}\overline{x_{55}}\overline{x_{56}}x_{59}$	$x_8 x_{40} \overline{x_{45}} x_{64} \overline{x_{74}} x_{87}$
$\overline{x_2}\overline{x_{14}}x_{52}\overline{x_{57}}x_{87}$	$x_{11}\overline{x_{14}}\overline{x_{24}}x_{61}x_{64}x_{90}\overline{x_{92}}$	$\overline{x_5}\overline{x_6}x_{16}x_{35}\overline{x_{45}}\overline{x_{56}}x_{59}$
$x_{40}\overline{x_{45}}x_{64}\overline{x_{74}}x_{87}$	$\overline{x_4}x_8\overline{x_{45}}\overline{x_{47}}x_{64}\overline{x_{74}}\overline{x_{89}}$	$\overline{x_2}\overline{x_{14}}\overline{x_{24}}x_{61}x_{64}x_{90}\overline{x_{92}}$
$\overline{x_{57}}x_{58}x_{77}\overline{x_{95}}x_{98}$	$\overline{x_5}x_{29}x_{38}\overline{x_{43}}\overline{x_{79}}x_{99} + \overline{x_3}\overline{x_5}\overline{x_{29}}x_{38}\overline{x_{43}}x_{49}\overline{x_{79}}x_{99}$	$\overline{x_5}x_6\overline{x_{11}}\overline{x_{14}}\overline{x_{18}}\overline{x_{34}}x_{45}$
Always	Always	Always
Correct	Incorrect	Incorrect

Analyst Layer Automation

Recall: Yield Example

- > Before this example, we had done work for resolving another yield issue for another product line
- Question: Can we learn to model the experience from that work and automate the Analyst Layer to resolve this yield issue

The Learning Objective

Modeling "Experience"

> To learn from analyst's experience, we need to have a way to model the experience

> Knowledge acquisition

- Define a set of operators
- Model experience as "<u>an execution path</u>" following a sequence of operators

Processing Mining Model

- > Record execution paths in a log file
- > Apply process learning to learn from the log file
- > Obtain a Process Model as shown above

ISPD 2018 Monterey CA

A Generalized Path

> Discover trim count is relevant to hot fails

Obtain A Meaningful Result

Determine that parameter C affects the frequency test value which decides the trim count

Summary: Three Observations

- The effectiveness of "Machine Learning" largely depends on how the Analyst Layer is conducted
- > Automation of "Machine Learning" needs to include automation of the Analyst Layer
- Traditional machine learning tools are not designed to effectively support the Analyst Layer
 - Require an Alternative ML view and a learning tool designed to be used without Cross-Validation

THANK YOU!