Machine Learning For Feature-Based Analytics

Li-C. Wang University of California, Santa Barbara

ISPD 2018 Monterey CA

Machine Learning

➢**Machine Learning is supposed to construct an "optimal" model to fit the data (whatever "optimal" means)**

ML Tools: e.g. http://scikit-learn.org/

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition. Algorithms: SVM, nearest neighbors, random forest, ... - Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency Algorithms: PCA, feature selection, non-negative matrix factorization.

- Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, $-$ Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation, $-$ Examples metrics.

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, ... $-$ Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. **Modules:** preprocessing, feature extraction.

- Examples

ISPD 2018 Monterey CA 3

Dataset Format

➢ **A learning tool usually takes the dataset as above**

- **Samples: examples to be reasoned on**
- **Features: aspects to describe a sample**
- **Vectors: resulting vector representing a sample**
- **Labels: care behavior to be learned from (optional)**

ISPD 2018 Monterey CA

Noticeable ML Applications In Recent Years

Self-Driving Car Mobile Google Translation

Smart Robot AlphaGo (Google)

*These images are found in public domain

Deep Learning for Image Recognition

➢ **ImageNet: Large Scale Visual Recognition Challenge [\(http://www.image-net.org/challenges/LSVRC/](http://www.image-net.org/challenges/LSVRC/))**

– **1000 Object Classes, 1.4M Images**

Deep Learning for Image Recognition

➢ **ImageNet: Large Scale Visual Recognition Challenge [\(http://www.image-net.org/challenges/LSVRC/](http://www.image-net.org/challenges/LSVRC/))**

– **1000 Object Classes, 1.4M Images**

Deep Learning for Image Recognition

➢ **ImageNet: Large Scale Visual Recognition Challenge [\(http://www.image-net.org/challenges/LSVRC/](http://www.image-net.org/challenges/LSVRC/))**

– **1000 Object Classes, 1.4M Images**

Question Often Asked

➢**Which tool is better?**

In many EDA/Test applications, it is not just the tool!

ISPD 2018 Monterey CA

Applications – Our Experience

Challenges in Machine Learning for EDA/Test

➢ **Data**

- **Data is limited**
- **Data can be extremely unbalanced (very few positive samples of interest, many negative samples)**
- **Cross-validation is not an option**

➢ **Model Evaluation**

- **The meaningfulness of a model specific to the context**
- **Model evaluation can be rather expensive**

e.g. Functional Verification

- ➢ **Goal: to achieve more coverage on CP**
- ➢ **Approach: Analyze simulation traces to find out**
	- **What combination of signals can activate CP?**
- \triangleright **Features:** f_1, f_2, \dots, f_n are testbench-controllable signals
- ➢ **Data: Few or no samples that cover CP**
	- **Positive Samples: 0 to few**
	- **Negative Samples: 1K to few K's**

e.g. Physical Verification

- ➢ **Goal: to model causes for an issue**
- ➢ **Approach: Analyze snippets of layout images to find out**
	- **What combination of features can cause a issue?**
- \triangleright **Features:** f_1, f_2, \dots, f_n are developed based on domain **knowledge to characterize geometry or material properties**
- ➢ **Data: Few samples for a particular type of issue**
	- **Positive Samples: 1 to few**
	- **Negative Samples: many**

e.g. Timing Verification

- ➢ **Goal: to model causes for a miss-predicted silicon critical path**
- ➢ **Approach: Analyze unexpected silicon critical paths**
	- **What combination of design features can cause an unexpected critical path?**
- \triangleright **Features:** f_1, f_2, \dots, f_n are developed based on design knowledge to **characterize a timing path**
- ➢ **Data: Few samples for a particular type of critical path**
	- **Positive Samples: 1 to few**
	- **Negative Samples: many (STA critical but not silicon critical – about \$25K paths)**

e.g. Yield

- ➢ **Goal: to find a receipt to improve yield**
- ➢ **Approach: Analyze wafer yield data with process parameters**
	- **Tuning what combination of process parameters can improve yield?**
- \triangleright **Features:** f_1, f_2, \dots, f_n are tunable process parameters
- ➢ **Data: Samples can be parts or wafers**
	- **Positive Samples: Failing parts or Low-yield wafers**
	- **Negative Samples: Others**

Feature-Based Analytics

➢ **Problem:**

– **Search for a combination of features or feature values among a large set of features**

➢ **Data:**

- **Interested in positive samples**
- **Extremely unbalanced – Many more negative samples and very few positive samples**

➢ **Not a traditional feature selection problem**

- **Insufficient data**
- **Cannot apply cross-validation to check a model**

In Practice, This Is What Happens

➢ **Learning from data becomes an iterative search process (usually run by a person)**

An Iterative Search Process

- ➢ **Learning is an iterative search process**
- ➢ **The analyst**
	- **(1) Prepare the datasets to be analyzed**
	- **(2) Determine if the results are meaningful**
- ➢ **The effectiveness depends on how the analyst conducts these two steps – not just about the tool in use!**

Implications

Implications

Implications

Machine Learning Toolbox

Questions

➢ **Recall main issue: We can't apply cross-validation**

- ➢ **Why do we need cross-validation?**
- ➢ **Why can a machine learning algorithm guarantees the accuracy of its output model?**
- ➢ **What's a machine learning algorithm trying to optimize anyway?**

Five Assumptions To Machine Learning

- ➢ **A restriction on** *H* **(otherwise, NFL)**
- ➢ **An assumption on** *D* **(i.e. not time-varied)**
- ➢ **Assuming size** *m* **is in order O(poly(***n***)),** *n***: # of features**
- ➢ **Making sure a practical algorithm** *L* **exists**
- ➢ **Assuming a way to measure error, e.g.** *Err(f(x), h(x))*

In Practice

As A Result, We Need Occam's Razor Assumption

- ➢ **Hypothesis space: e.g. all possible assignment of weight values in a neural network (can be infinite)**
- ➢ **Occam's Razor (Regularization): Find the "simplest" hypothesis that fit the data**
	- **Hence, many machine learning algorithms solve a non-convex constrained minimization problem (NP-Hard or Harder)**
- ➢ **However, the simplicity measure might not be meaningful in an application context**

In Practice

Many Things Are Not Ideal

- ➢ **Your assumption of the hypothesis space might be too simple (underfitting) or too complex (overfitting)**
- ➢ **You may not have sufficient data to identify the exact answer from your assumed hypothesis space**
- ➢ **Your learning algorithm is only a heuristic and does not guarantee to find the "optimal" model**
- ➢ **As a result, you need cross-validation**

Main Question For The ML Tool

Alternative Machine Learning View

- ➢ **Traditional machine learning: Find an optimal model based on the given dataset**
- ➢ **Alternative machine learning: Find an interpretable Hypothesis Space Assumption** *H* **where a model can JUST-FIT the dataset but not overfitting**

Illustration of AML

- ➢ **Search for the "JUST-FIT" hypothesis space**
	- **Such that the output model among the few answers consistent with all the samples**
- ➢ **The JUST-FIT hypothesis space (if exists) can be a measure of quality for the model**

ISPD 2018 Monterey CA

VeSC-CoL: Our Concept Learning Tool

VeSC-CoL

- ➢ **Reference : Kuo-Kai Hsieh and Li-C. Wang, A Concept Learning Tool Based On Calculating Version Space Cardinality, arXiv:1803.08625 [cs.AI], Mar 23, 2018**
- ➢ **Handle binary-valued features**
- ➢ **Target (interpretable) concept:** *k-term DNF, for small k*
- ➢ **Designed to handle extremely-unbalanced dataset without cross-validation**
- ➢ **Two implementations: SAT-Based and OBDD-Based**

K-term DNF – Terminology

 $x_1\overline{x_2}x_4$ \longrightarrow 1-term DNF or Monomial **Length** *l* **= number of literals = 3**

$$
x_1 \overline{x_2} x_4 + \overline{x_4} x_6 \longrightarrow
$$
 2-term DNF or Monomial

Length l = number of literals = $3+2 = 5$

n **= number of features (variables)**

VeSC-CoL's Hypothesis Space Search

➢ **Given an upper bound on** *k* **for** *k***-term DNF**

 \triangleright H_l is the hypothesis space for all hypotheses with **length** *l*

Runtime Examples (k=1)

Interesting Finding

➢ **As** *n* **increases, you are likely to run out of time than to run out of data (assuming most are negative samples)**

Interesting Finding

➢ **For BDD-based implementation, the runtime wall happens in the early processing of the negative samples**

Number of features: *n=***100**

Interesting Finding

➢ **Requirement for learning the "***k***=1" space dominates the requirements for learning the "***k***>1" spaces**

Guarantee by VeSC-CoL

- ➢ **Assuming the correct answer can be represented as a k-term DNF for a selected k, then VeSC-CoL always find the answer (assuming runtime is allowed)**
	- **Experimentally shown for** *k* **up to 3,** *l* **up to 8, negative sample size up to 10K**

Analyst Layer Automation

Recall: Yield Example

- ➢ **Before this example, we had done work for resolving another yield issue for another product line**
- ➢ **Question: Can we learn to model the experience from that work and automate the Analyst Layer to resolve this yield issue**

The Learning Objective

Modeling "Experience"

➢ **To learn from analyst's experience, we need to have a way to model the experience**

➢ **Knowledge acquisition**

- **Define a set of operators**
- **Model experience as "an execution path" following a sequence of operators**

Processing Mining Model

- ➢ **Record execution paths in a log file**
- ➢ **Apply process learning to learn from the log file**
- ➢ **Obtain a Process Model as shown above**

ISPD 2018 Monterey CA 45

A Generalized Path

➢ **Discover trim count is relevant to hot fails**

Obtain A Meaningful Result

➢ **Determine that parameter C affects the frequency test value which decides the trim count**

Summary: Three Observations

- ➢ **The effectiveness of "Machine Learning" largely depends on how the Analyst Layer is conducted**
- ➢ **Automation of "Machine Learning" needs to include automation of the Analyst Layer**
- ➢ **Traditional machine learning tools are not designed to effectively support the Analyst Layer**
	- **Require an Alternative ML view and a learning tool designed to be used without Cross-Validation**

THANK YOU!