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Machine Learning

➢Machine Learning is supposed to 
construct an “optimal” model to fit 
the data (whatever “optimal” means)

2

Data
Machine 
Learning Model

ISPD 2018 Monterey CA



ML Tools: e.g. http://scikit-learn.org/
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Dataset Format

➢ A learning tool usually takes the dataset as above

– Samples: examples to be reasoned on

– Features: aspects to describe a sample

– Vectors: resulting vector representing a sample

– Labels: care behavior to be learned from (optional)
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Noticeable ML Applications In Recent Years

ISPD 2018 Monterey CA 5

Self-Driving Car Mobile Google Translation

Smart Robot
AlphaGo (Google)

*These images are found in public domain



Deep Learning for Image Recognition

➢ ImageNet: Large Scale Visual Recognition Challenge 
(http://www.image-net.org/challenges/LSVRC/) 
– 1000 Object Classes, 1.4M Images
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Question Often Asked

➢Which tool is better?

9

In many EDA/Test applications,
it is not just the tool!
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Applications – Our Experience
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Challenges in Machine Learning for EDA/Test

➢ Data

– Data is limited

– Data can be extremely unbalanced (very few positive 
samples of interest, many negative samples)

– Cross-validation is not an option

➢ Model Evaluation

– The meaningfulness of a model specific to the context

– Model evaluation can be rather expensive
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e.g. Functional Verification

➢ Goal: to achieve more coverage on CP

➢ Approach: Analyze simulation traces to find out
– What combination of signals can activate CP?

➢ Features: 𝒇𝟏, 𝒇𝟐, ⋯ , 𝒇𝒏 are testbench-controllable signals

➢ Data: Few or no samples that cover CP
– Positive Samples: 0 to few

– Negative Samples: 1K to few K’s
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e.g. Physical Verification

➢ Goal: to model causes for an issue

➢ Approach: Analyze snippets of layout images to find out
– What combination of features can cause a issue?

➢ Features: 𝒇𝟏, 𝒇𝟐, ⋯ , 𝒇𝒏 are developed based on domain 
knowledge to characterize geometry or material properties

➢ Data: Few samples for a particular type of issue
– Positive Samples: 1 to few

– Negative Samples: many 
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e.g. Timing Verification

➢ Goal: to model causes for a miss-predicted silicon critical path
➢ Approach: Analyze unexpected silicon critical paths

– What combination of design features can cause an unexpected critical path?

➢ Features: 𝒇𝟏, 𝒇𝟐, ⋯ , 𝒇𝒏 are developed based on design knowledge to 
characterize a timing path

➢ Data: Few samples for a particular type of critical path
– Positive Samples: 1 to few
– Negative Samples: many (STA critical but not silicon critical – about $25K paths)
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e.g. Yield

➢ Goal: to find a receipt to improve yield

➢ Approach: Analyze wafer yield data with process parameters
– Tuning what combination of process parameters can improve yield? 

➢ Features: 𝒇𝟏, 𝒇𝟐, ⋯ , 𝒇𝒏 are tunable process parameters

➢ Data: Samples can be parts or wafers
– Positive Samples: Failing parts or Low-yield wafers

– Negative Samples: Others
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Feature-Based Analytics

➢ Problem: 
– Search for a combination of features or feature values 

among a large set of features

➢ Data:
– Interested in positive samples

– Extremely unbalanced – Many more negative samples and 
very few positive samples

➢ Not a traditional feature selection problem
– Insufficient data

– Cannot apply cross-validation to check a model 

16ISPD 2018 Monterey CA



In Practice, This Is What Happens

➢ Learning from data becomes an iterative search 
process (usually run by a person)
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An Iterative Search Process

➢ Learning is an iterative search process

➢ The analyst
– (1) Prepare the datasets to be analyzed

– (2) Determine if the results are meaningful

➢ The effectiveness depends on how the analyst conducts 
these two steps – not just about the tool in use!
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Implications
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The effectiveness of the search 
largely depends on how the Analyst 

Layer is conducted



Implications
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The Analyst Layer demands a 
ROBUST Machine Learning Toolbox 
where the model can be assessed 

WITHOUT cross-validation



Implications
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Automation requires automating 
both the Analyst Layer and the 

Machine Learning Toolbox



Machine Learning Toolbox
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Questions

➢ Recall main issue: We can’t apply cross-validation

➢ Why do we need cross-validation?

➢ Why can a machine learning algorithm guarantees 
the accuracy of its output model?

➢ What’s a machine learning algorithm trying to 
optimize anyway?
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Five Assumptions To Machine Learning

➢ A restriction on H (otherwise, NFL)

➢ An assumption on D (i.e. not time-varied)

➢ Assuming size m is in order O(poly(n)), n: # of features

➢ Making sure a practical algorithm L exists

➢ Assuming a way to measure error, e.g. Err(f(x), h(x))
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In Practice
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As A Result, We Need Occam’s Razor Assumption

➢ Hypothesis space: e.g. all possible assignment of weight 
values in a neural network (can be infinite)

➢ Occam’s Razor (Regularization): Find the “simplest” 
hypothesis that fit the data
– Hence, many machine learning algorithms solve a non-convex 

constrained minimization problem (NP-Hard or Harder)

➢ However, the simplicity measure might not be meaningful in 
an application context
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In Practice
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Many Things Are Not Ideal

➢ Your assumption of the hypothesis space might be 
too simple (underfitting) or too complex 
(overfitting)

➢ You may not have sufficient data to identify the 
exact answer from your assumed hypothesis space

➢ Your learning algorithm is only a heuristic and does 
not guarantee to find the “optimal” model

➢ As a result, you need cross-validation
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Main Question For The ML Tool
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Can we have a ML tool that can produce a 
model with some guarantee, without 

using Cross-Validation?



Alternative Machine Learning View

➢ Traditional machine learning: Find an optimal model 
based on the given dataset

➢ Alternative machine learning: Find an interpretable 
Hypothesis Space Assumption H where a model can 
JUST-FIT the dataset but not overfitting
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Illustration of AML

➢ Search for the “JUST-FIT” hypothesis space
– Such that the output model among the few answers 

consistent with all the samples

➢ The JUST-FIT hypothesis space (if exists) can be a 
measure of quality for the model 
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VeSC-CoL:

Our Concept Learning Tool
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VeSC-CoL

➢ Reference : Kuo-Kai Hsieh and Li-C. Wang, A Concept 
Learning Tool Based On Calculating Version Space 
Cardinality, arXiv:1803.08625 [cs.AI], Mar 23, 2018

➢ Handle binary-valued features

➢ Target (interpretable) concept: k-term DNF, for small k

➢ Designed to handle extremely-unbalanced dataset 
without cross-validation

➢ Two implementations: SAT-Based and OBDD-Based
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K-term DNF – Terminology
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𝑥1𝑥2𝑥4 1-term DNF or Monomial

Length l = number of literals = 3

𝑥1𝑥2𝑥4 + 𝑥4𝑥6 2-term DNF or Monomial

Length l = number of literals = 3+2 = 5

n = number of features (variables)



VeSC-CoL’s Hypothesis Space Search

➢ Given an upper bound on k for k-term DNF

➢ Hl is the hypothesis space for all hypotheses with 
length l
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Runtime Examples (k=1)

➢ Correct answer is 
with l = 5

➢ n does not affect 
runtime much

➢ l limits how far we 
can search
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Interesting Finding

➢ As n increases, you are likely to run out of time than to 
run out of data (assuming most are negative samples)
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Interesting Finding

➢ For BDD-based implementation, the runtime wall 
happens in the early processing of the negative samples 
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Interesting Finding

➢ Requirement for learning the “k=1” space dominates 
the requirements for learning the “k>1” spaces 
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Guarantee by VeSC-CoL

➢ Assuming the correct answer can be represented as a 
k-term DNF for a selected k, then VeSC-CoL always 
find the answer (assuming runtime is allowed)

– Experimentally shown for k up to 3, l up to 8, negative 
sample size up to 10K
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Analyst Layer Automation
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Recall: Yield Example

➢ Before this example, we had done work for resolving 
another yield issue for another product line

➢ Question: Can we learn to model the experience 
from that work and automate the Analyst Layer to 
resolve this yield issue
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Analytics
Software

The Learning Objective
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Modeling “Experience”

➢ To learn from analyst’s experience, we need to have 
a way to model the experience

➢ Knowledge acquisition

– Define a set of operators

– Model experience as “an execution path” following a 
sequence of operators
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Processing Mining Model

➢ Record execution paths in a log file

➢ Apply process learning to learn from the log file

➢ Obtain a Process Model as shown above
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A Generalized Path

➢ Discover trim count is relevant to hot fails
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Obtain A Meaningful Result

➢ Determine that parameter C affects the frequency 
test value which decides the trim count
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Summary: Three Observations

➢ The effectiveness of “Machine Learning” largely 
depends on how the Analyst Layer is conducted

➢ Automation of “Machine Learning” needs to include 
automation of the Analyst Layer

➢ Traditional machine learning tools are not designed 
to effectively support the Analyst Layer

– Require an Alternative ML view and a learning tool 
designed to be used without Cross-Validation
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THANK YOU!
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