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3 Questions with The Title … 

 What kind of “AI” are we talking about? 

 

 

 Why use the word “Autonomous”? 

 

 

 To what extent machine can replace human? 
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What Kind of “AI”? 

 1950 “Computing Machinery and Intelligence” – The Turing Test 
 Other AI: Thinking humanly, Thinking rationally, Acting rationally 
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Why “Autonomous”? 

 Sensing: SR/LR Radars, LiDAR, Vision, Stereovision, U-Sonic, etc.   

 Perception: Neuro-processors (lane detection, object recognition) 

 Reasoning & Control: Free space calculation, path planning, 
speed/brake/rotation controls 
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What The 3 Components Do 

 Sensing: Collect all relevant data 

 Perception: Recognize what data mean 

 Reason & Control: What to do next 

2018 Aug 16, 10:20-11:10, ITC Asia, Keynote 2 6 

Sensing 

Perception 

Reasoning 
& Control 

SR-Radar 
LR-Radar 

LiDAR 

Vision 

Stereovision 

U-Sonic … 

Perception Component 

Flowchart 

Optimization 
engine 

Decision-Tree 

Fuzzy rules 

… 



Ok, that’s interest … 

But why we talk about it? 

 

Most of us don’t build the 
autonomous system in a 

self-driving car … 
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That’s true, but most of us are 
interested in applying ML in our 

respective applications …  
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A Key Message: System View for Applying ML 

 This is especially the case when the ML 
solution is deployed in design/test processes 
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Applying ML in an 
application 

In order to deploy a solution, it is not 
just about the ML tool – very often, we 

need a system to apply ML. 

Autonomous System 



Next …  

Let’s talk about this journey … 
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Applying ML  Autonomous System 



Applying ML in Design/Test (2003-2013) 
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IEEE Trans. On CAD Paper (Oct 2016): 
 

“Experience of Data Analytics in EDA and 
Test – Principles, Promises, and Challenges” 

 



Applying ML in Design/Test (2003-2013) 
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This journey went through 
multiple stages … 

 



Applying ML in Design/Test (2003-2013) 
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At first, it was “Algorithmic 
Focus” – What is the best ML 

algorithm to use? 
 



An Application Example – Fmax Prediction 
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Example Algorithms For Regression 

 See Janine Chen et al. (ITC 2009) 
– “Data Learning Techniques and Methodology for Fmax Prediction” 
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LSF method 
(linear model, 

over-fitting the  
training dataset) 

RG method 
(linear model, 

provide a way to 
avoid the over-fitting) 

K-NN method 
(distance-based, 
over-fitting the  
training dataset) 

SVR method 
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calculate the distance, 
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GP method 
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with the ability 
to estimate the 

prediction confidence) 
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over-fitting issue 

Improve on the  

over-fitting issue 

Combined 

with  

Bayesian 

inference 

Replace linear model 

with a model in the form 
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of kernel basis functions 



GB Was The Best! (Conformal Check) 

 See Janine Chen et al. (ITC 2009) 
– “Data Learning Techniques and Methodology for Fmax Prediction” 
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A Barrier for Deployment 

 Can’t deploy a model without having a 
consistent set of features across all lots 
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Applying ML in Design/Test (2003-2013) 
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In the 2nd stage, it was 
“Methodology Centric” – What is 
the most effective methodology 
to enable deployment of a ML-

based solution/model? 
 



The Need for Domain Expert 

 A domain expert won’t accept a solution if he/she can’t see 
the value, or don’t understand it 
– Interpretable and actionable model 
– Added value to their existing solutions already in place 

 
 Let the methodology start with an expert, by  

– Asking for a set of “reasonable” features 
– Collecting sufficient data for learning feature importance 

 
 But … 

– If the engineer knows what features are relevant, why even 
apply so-called “Machine Learning”?  

– If they don’t know, how much data is needed?  
– If collecting the data is hard, will it ever get done?  
– If it is too costly, what’s the added value? 
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Applying ML in Design/Test (2003-2013) 
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In the 3rd stage, it was 
“Application Driven” – Which 

application has a better chance 
to successfully adopt a ML 

solution? 
 



My Old Slide: Four Key Considerations 

 In this picture, I did not mention a “learning 
algorithm” because it was not as deciding a 
factor than these four for realizing a practical 
methodology for an application 
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Applying ML in Design/Test (Since 2013) 
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In the 4th stage, it was all about 
the “Deployment” – What does it 
take to deploy a ML solution and 
actually see an “Added Value?” 

 



Added Value – Yield Improvement (2013) 

 Yield fluctuated for the SoC product line, and the product/design 
teams could not solve the problem for months after several design 
and test revisions, and several process tuning recipes 

 By apply ML tools on silicon data, we found 5 process parameters 
to be tuned 

 Foundry accepted them and implemented as two adjustments 
 Significant yield improvement observed in production  
 ITC 2014 paper documents the story 
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An Important Question Next … 

 In the yield example, we and the product team 
had access to the same set of ML tools 
 

 So, why we succeeded and they did not? 
 
 

 Because we had the knowledge enabling us to 
conduct a more effective analytic process to 
apply the ML tools 
 

 It was that piece of knowledge made the 
difference, not the tools in use 
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An Important Deployment Question 

 For deploy a solution, I can’t just package the 
ML tools and give it to the product team 

 

 I needed to package my “knowledge” – How 
am I going to do that? 
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We Need A System View To Apply ML 

So in short, why the system view? 

 

Because we need domain knowledge 
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We Need A System View To Apply ML 

Why do we need domain knowledge? 

 

Mainly, because we have limited data 
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We Need A System View To Apply ML 

 What is so special about applying ML in view of “limited data?” 
 

 “Learning from Limited Data in VLSI CAD” – an upcoming book 
chapter - preview at our lab web site: https://iea.ece.ucsb.edu/  
 

 Because there are theoretical assumptions made to achieve ML, 
and with limited data those assumptions would be hard to meet in 
practice  we need domain knowledge to compensate ML 
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What Theoretical Assumptions 
for Machine Learning? 
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Five Assumptions for Supervised Learning 

A restriction on H (otherwise, NFL) 

An assumption on D (i.e. not time-varied, e.g silicon data) 

Assuming size m is in order O(poly(n)), n: # of features 

Making sure a practical algorithm L exists 

Assuming a way to measure error, e.g. Err(f(x), h(x)) 
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In Practice, Issue #1 
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Because we don’t know how complex 
H should be, we assume the most 

complex H we can afford in training 



In Practice, Issue #2 
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For a complex H we need a large 
amount of data, but we usually don’t 
know if we have enough in advance 



In Practice, Issue #3 
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Because non-convex optimization is 
hard, some heuristic is used, and the 

solution is often a local minimum 



In Summary, Four Barriers To Consider … 

A result after considering those 4 barriers 
–Data barrier 

– Theoretical barrier 

–Computational barrier 

–Deployment barrier (over an existing solution) 

The system is largely domain-knowledge-driven 
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The Yield Context 
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The AI System 

The core of this AI system view is the 
autonomous execution of the workflow 
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So we launched the project 

(Intelligence Engineering Assistant) 
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The IEA research lab: https://iea.ece.ucsb.edu/  



Now, let’s have a glance of what 
IEA looks like … 

 

<IEA Demo> 
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Future Plan of IEA 

Tutorial and courses 

–IEA tutorial (ITC 2018 on Oct 30) 

–IEA courses (Fall and Winter quarters) 

 

Two IEA systems in progress: 

–IEA for production yield engineer 

–IEA for verification engineer 
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In summary … 
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Autonomous System => IEA 

Tool Invocation: Collect all relevant “data” 

Result Evaluation: Recognize what “data” mean 

Reason & Control: What to do next 
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What “Engineering Intelligence” Means in IEA 

One my student asked: “Can I use an API for IEA”? 
– Image what would be like by taking away the wheel and 

asking people to drive car using their voice …   

– The intelligence is not about using natural language to 
invoke commands to instruct IEA how to do the task 

 

The language interface is mostly used for queries of 
results after the autonomous execution is completed 
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What’s Would Be A 
Good Way To 

Conclude? 
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Matrix – The Moive 

The Movie Matrix: “There is No Spoon”  
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https://www.youtube.com/embed/dzm8kTIj_0M


Matrix – The Moive 

The Movie Matrix: “There is No Spoon”  
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https://www.youtube.com/embed/dzm8kTIj_0M


IEA Quote 

“Do not try achieving AI … That is impossible.” 

“Instead … only try to realize the truth.” 

“What truth?” (you may say) 

“There is no AI!” 

“Then, you will see. It is not the AI that’s achieved …” 

“It is only yourself.” 

 

So, I haven’t answered the question “To what extent 
can machine replace a person?”, or have I? 

Well … I still don’t know exactly … but I suspect it will 
be close to 100% in the foreseeable future 

2018 Aug 16, 10:20-11:10, ITC Asia, Keynote 2 47 



THANK YOU 
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